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Abstract. The transmission of electromagnetic radiation at normal incidence through a
magnetic film is considered for film thicknessL small enough to require the inclusion of
exchange effects arising from the wave-number componentkz ∼ π/L. We apply the continuum
form of the dynamical equations with parametrized spin boundary conditions including pinned
and unpinned spins as special cases. For applied field normal to the interfaces (Faraday geometry)
the propagating modes are circularly polarized but because of the exchange there are two modes,
say optical and spin, in each polarization. Equations for the transmission are given in a general
form that allows for partial mirrors at the interfaces and applies to a film on a substrate as well
as a free-standing film. Computed transmission spectra show that spin-wave fringes are unlikely
to be observable for ferromagnets but can be significant in antiferromagnets. Some discussion
is given of the implications for the characterization of antiferromagnetic film systems by means
of far-infrared spectroscopy.

1. Introduction

In a previous paper [1], denoted I, we gave a preliminary discussion of the properties of
a Fabry–Ṕerot resonator with a gyromagnetic medium between the partial mirrors. Two
simplifications were made: exchange effects were not included because the permeability
tensorµ was taken with no dependence on wave vectork and the problem was treated for the
linear ŕegime. These assumptions are practical for both ferromagnets and antiferromagnets
provided that the thicknessL of the resonator is such thatk ≈ 1/L is not too large and
that the incident intensity is not large. In I we discussed and illustrated the results for
both Faraday (static field normal to mirrors) and Voigt (field in plane) geometries. In the
former the optical eigenmodes are the circular polarization states; in terms of these in both
ferromagnets and antiferromagnets normal-incidence transmission fringes are seen except
near resonance where the medium is highly absorptive. The formalism allows for partially
reflecting mirrors at the surfaces of the magnetic medium and the transmission peaks become
sharper with increasing mirror reflectivity.

We extend these calculations by including exchange in the continuum approximation
with the result thatµ becomes spatially dispersive because of a termDk2 in the denominator.
For the Faraday geometry with normally incident radiation, which is all we discuss, the
circular polarization states are still eigenmodes but there are now two possible values of
k so from the optical point of view the medium is birefringent in either polarization. For
practical values ofD the two values ofk differ greatly in magnitude and for most frequencies
they can be regarded as an ‘optical’ modekO and a ‘spin-wave’ modekS with kS � kO .
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Because of the birefringence, calculation of transmission and reflection involves allowing
for two downward and two upward waves in the medium. The standard electromagnetic
boundary conditions are insufficient to determine all the coefficients and therefore ‘spin’
boundary conditions on the rf magnetization must be included. We take these in the standard
Rado–Weertman [2] form that includes both pinned and unpinned spins as special cases.

Spin-wave fringes, which depend significantly on the form of the boundary conditions,
are seen forL ∼ 1/D1/2. For a ferromagnet, with resonance wavelengthλR in the
microwave region, this means thatL � λ. Thus the volume of magnetic material is
very small on the scale of the wavelength and in consequence we find that the spin-wave
fringes are far too small to be observable. Nevertheless, we include an illustration for two
reasons. First a ferromagnet is the easiest example and second the obvious way to increase
the magnetic volume is to consider a superlattice; the present calculation is a starting point
for a study of transmission through a superlattice in the dipole-exchange régime. For an
antiferromagnet, on the other hand, withλR generally some orders of magnitude larger than
in a ferromagnet, the disparity betweenL and λ is not so great and in consequence the
spin-wave fringes are on a practical scale. Furthermore, as mentioned, the form and scale
of the fringes depends on the spin-wave boundary conditions so in principle the Fabry–Pérot
resonator has potential application in the characterization of antiferromagnet film systems.

A general discussion of related literature was given in I and will not be repeated.
However, we draw attention to two papers. Dipole-exchange effects in antiferromagnets
were discussed by Stamps and Camley [3]. Their starting point is similar to ours but they
go on to discuss the different problem of propagating dipole-exchange modes in a thin
film. Lui et al [4] succeeded in observing spin-wave fringes in a microwave absorption
experiment on epitaxial MnF2 films of MBE quality.

In section 2 we derive the required forms ofµ and show some dispersion graphs,ω

versusk. Section 3 is concerned with the optical problem of reflection and transmission. We
show that an extension of the standard calculation enables the results for the Fabry–Pérot
resonator to be expressed in terms of coefficients for reflection and transmission at a single
interface. These coefficients are given in an appendix in general form. Computed graphs
of transmission are shown and discussed in section 4. Finally, section 5 contains a general
discussion and conclusions.

2. Susceptibilities and dispersion graphs

2.1. Ferromagnets

The central quantity is the susceptibility tensorχ(k, ω) relating the rf magnetizationm(ω)
to the incident rf fieldh(ω); in the later optical calculations we use the permeability
µ(k, ω) = I+χ(k, ω). These quantities can be derived from torque equations of motion [5]
or from the continuum limit of microscopic equations [6]. We follow the latter route and
include a Landau–Lifshitz damping term−GLLm × (m ×H). Like the simpler dipolar
equations [1] the equations of motion are diagonalized by the transformationm± = mx±imy .
Eventually we find for the corresponding susceptibilities

χ± = (1± iη)ωm
(ωd + ωA +Dk2)(1± iη)± ω (1)

whereωm = γµ0M0, with M0 the static magnetization,ωA = γµ0HA, whereHA is the
anisotropy field, andωd = γµ0Hd , whereHd = H0−M0, which includes a demagnetization
correction to the applied fieldH0 since we take the field normal to the interfaces. The
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damping parameter isη = M0GLL/γµ0 and D is related to the exchange constantJ
by D = SJa2/2 with a the nearest-neighbour distance. We have made the replacement
∇2 → −k2 since we deal throughout with plane waves exp[i(kz − ωt)]. Usually for
ferromagnets the anisotropyωA can be neglected and when alsoD→ 0 (1) reduces to the
well known form [1] for dipolar modes.

It helps in discussing Fabry–Pérot transmission and other optical properties to be able
to refer to dispersion curves ofω versusk. The equation is

k2 = εµω2/c2 (2)

with superscript± implied onk andµ. Substitution of (1) into (2) gives a quadratic equation
for k2. The leading term isDk4 and sinceD is small we can use the fact that the roots of
the quadratic equationDk4 + bk2 + c = 0 are approximatelyk2 = −b/D andk2 = −c/b.
The first is the spin-wave and the second the optical mode mentioned earlier. The latter is
quite well known since it is the purely electromagnetic mode and the explicit form of the
former is

(k±)2 = (ωm − ω0∓ ω)/D (3)

in the approximation where damping is neglected.
Solutions of (3) are shown in figure 1 forω0 = ωm/2 and 3ωm/2. To a very good

approximation the ‘optical modes’ are given by the permeabilities derived from (1) with
D = 0 and figures 1(a) and 1(c) are readily understood on that basis. Forω0 = ωm/2,
figure 1(a),µ+ is resonant whileµ− is non-resonant and the dispersion curves are determined
by these facts. Thusk+0 has a typical resonant form whilek−0 is predominantly imaginary
for ω < ωm/2 and real forω > ωm/2. For ω0 = 3ωm/2, on the other hand, it isµ−

that is resonant, as is reflected in figure 1(c). The ‘spin modes’ follow the approximate
form (3) quite closely and it is easy to interpret figures 1(b) and 1(d) on the basis of (3).
For ω0 = ωm/2, figure 1(b),k+S is predominantly real forω < ωm/2 and imaginary for
ω > ωm/2 whereask−S is predominantly real for allω. The other important feature of
figure 1 is the substantial difference ink scale between the optical and spin modes.

2.2. Antiferromagnets

The starting point is the Hamiltonian for a two-sublattice antiferromagnet with a static field
directed along the easy axis, denotedz. In a subsequent section this will also be taken as
the normal to the Fabry–Pérot mirrors. The Hamiltonian is

H =
∑
α,β

Jα,βSα · Sβ − gµBBA
∑
α

Szα + gµBBA
∑
β

Szβ − gµBBa ·
(∑

α

Sα +
∑
β

Sβ

)
.

(4)

Here α refers to the spin-up andβ to the spin-down sublattice.Jαβ is the exchange
interaction which favours antiparallel ordering of neighbouring spins.BA is the effective
anisotropy field, which has the same magnitude and opposite directions for the two
sublattices.Ba is the applied field, defined as

Ba = B0ẑ + bxx̂+ by ŷ (5)

with B0 the applied static field, andb = bxx̂ + by ŷ the rf driving field. There are no
demagnetizing effects because without an external field the equilibrium magnetization in an
antiferromagnet is zero.
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(a)

(b)

Figure 1. Dispersion curves for a YIG plate in normal magnetic field, propagation normal to
plate (Faraday geometry). Parameters areµ0M0 = 0.176 T, ε = 15.4 and we assumeωA = 0
and0 = 0.05ωm. (a) ‘Optical modes’k±O and (b) ‘Spin modes’k±S for ω0 = ωm/2; (c) ‘Optical
modes’k±O and (d) ‘Spin modes’k±S for ω0 = 3ωm/2. Dimensionless variables aref = ω/ωm
andK = ck/ωm.

The equation of motion for a spin operator is linearized by the RPA replacementSz → S

and continuum magnetization variables are introduced by the definition

m(r) = υ0gµB
∑
i

Siδ(r − ri ) (6)

whereυ0 is the number of spins per unit volume,gµB is the magnetic moment per spin,
andυ0

∑
i Siδ(r − ri ) defines an average over a volume containing many spins but with

linear dimension small on the scale of variations ofm(r). As in the case of the ferromagnet
the resulting equations are diagonalized by the transformationsm± = mx ± imy for both
sublattices. A Landau–Lifshitz damping term is includes for each sublattice and the final
form of the equations is

[ω + (ω0+ (ωE + ωA))(1+ iη)]m+α = [−(ωE −Dk2)(1+ iη)]m+β + [ωm(1+ iη)]h+ (7)

[ω + (ω0− (ωE + ωA))(1− iη)]m+β = [(ωE −Dk2)(1− iη)]m+α + [−ωm(1− iη)]h+ (8)
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(c)

(d)

Figure 1. (Continued)

[ω − (ω0+ (ωE + ωA))(1− iη)]m−α = [(ωE −Dk2)(1− iη)]m−β + [−ωm(1− iη)]h− (9)

[ω − (ω0− (ωE + ωA))(1+ iη)]m−β = [−(ωE −Dk2)(1+ iη)]m−α + [ωm(1+ iη)]h−. (10)

Here η, ω0, ωA andωm are defined as for the ferromagnet withM0 now the equilibrium
sublattice magnetization. NowD = SJa2 andωE = nSJ wheren is the nearest-neighbour
number anda the distance to nearest neighbours. The derivation of (7)–(10) is similar to that
given by Stamps and Camley [3] in their discussion of dipole-exchange modes propagating
in the plane of thin-film antiferromagnets. We note in particular that the effective field on
sublatticeα includes a termD∇2mβ and vice versa.

The susceptibilities are defined bym± = χ±h± wherem± = m±α +m±β and solution of
(7)–(10) gives

χ± = −2ωm(ωA +Dk2)(1+ η2)+ i{2ηωωm}
[ω2± 2ωω0+ {ω2

0 − (ωE + ωA)2+ (ωE −Dk2)2}(1+ η2)] + i{2ηω(ωE + ωA)}
.

(11)

It is helpful for understanding later results to show the simplified form ofχ± obtained by
putting η = 0 and dropping termsD2k4 in the denominator; reinstatement of the latter
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(a)

(b)

Figure 2. Dispersion curves for FeF2 plate in normal magnetic field 3 T, propagation normal
to plate (Faraday geometry). Axis variables areV = ω/2πc in cm−1 and k is in m−1.
Parameters are [7]|M0α | = |M0β = 0.056 T, ε = 5.5, BE = 53.3 T, BA = 19.7 T,
D = 0.182× 10−6 rad s−1 m2 and we take damping parameters|0α | = |0β | = 1.0× 10−4ωm.
(a) Optical modes, (b) spin-wave modes.

leads to inclusion of a higher-order spin-wave mode that is unlikely to be detectable. The
simplified expression is

χ± ≈ 2ωm(ωA +Dk2)

[−(ω ± ω0)2+ ω2
R + 2ωEDk2]

(12)

whereω2
R = ωA(2ωE +ωA) gives the antiferromagnetic resonance frequency. This form of

χ brings out the well known property [7] thatχ+ andχ− coincide in zero field and that
the effect of applying a field is to produce a Zeeman splitting±ω0.

The dispersion curves are given by (2) withµ± = 1+χ± and the general structure can
be seen by inserting (12); it is adequate to takeω0 = 0 and thereforeχ− = χ+ since the
effects of Zeeman splitting are fairly obvious. Equations (2) and (12) lead to

2ωEDk
4+ (ω2

R − ω2)k2+ (εω2/c2)(ω2− ω2
R − 2ωmωA) = 0 (13)
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(a) (b)

(c) (d)

Figure 3. Dispersion curves for FeF2 plotted ask+S,O (– – –) andk−S,O (——) in m−1 versus

field at fixed frequency. Only real values ofk are shown. (a) Re(k±S ) and (b) Re(k±O) for
ω/2πc = 57.0 cm−1 > ωR ; (c) Re(k±S ) and (d) Re(k±O) for ω/2πc = 47.0 cm−1 < ωR .

where small terms proportional toD have been omitted in the coefficient ofk2. As for the
ferromagnet, for smallD the roots correspond to an optical and a spin-wave mode given
by

k2
O =

ω2
R + 2ωmωA − ω2

ω2
R − ω2

(14)

k2
S = (ω2− ω2

R)/2ωED. (15)

Illustrative dispersion curves for FeF2 are shown in figure 2. These are based on the
full form (11) of the susceptibility but in fact they are described quite accurately by (14)
and (15). The form of the ‘optical’ modes, figure 2(a), is well known since it underlies
interpretation of far-infrared spectra of uniaxial antiferromagnets. One sees a Zeeman-split
resonance with what amounts to a magneticreststrahl between the frequencies given by
vanishing of the denominator and the numerator in (14). The ‘spin-wave’ modes, figure 2(b),
show the same Zeeman splitting. It is notable, as is clear from (15), that apart from the
small effect of dampingk±S is imaginary below and real above the resonance frequency
ωR ±ω0. It can be seen too that although there is a difference in horizontal scales between
figures 2(a) and 2(b) it is much less marked than for the ferromagnet. One reason for this
is that the resonance frequency is much higher andk scales with the resonance frequency.
A second reason is that althoughD is numerically small it is multiplied in (15) by the large
factorωE .
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In section 4 we show calculated curves for transmission through an antiferromagnetic
film as a function of frequency at fixed field and also as a function of field at fixed frequency.
Spin-wave fringes are seen wherekS is predominantly real so to connect with the second
form of plot we conclude this section by briefly discussing the variation ofkS with ω0

whenω is fixed. With field included, (15) is an equation fork±2
S in which ω2 is replaced

by (ω ± ω0)
2. It is easy to see from this that forω > ωR k

+
S is always real whereas for

ω < ωR k
+
S is real only forω0 > ωR − ω. On the other hand, forω > ωR k

−
S is real only

for ω0 < ω−ωR while for ω < ωR k
−
S is never real. Graphs of Re(k±S ) versusω0 for FeF2

for two frequencies are shown in figure 3.

3. Fabry–Pérot transmission and reflection: theory

We now turn to the main calculation of this paper with notation defined in figure 4. As
implied there, we restrict attention to normal incidence and we use the circular polarization
states, so that the superscript± is implied on all field amplitudes and related coefficients.
Compared with the simpler calculation when exchange effects are neglected, the main
complication is the presence of two downward and two upward waves in the magnetic
medium. Because of this, it is necessary to define boundary conditions onm(r) to
supplement the usual electromagnetic boundary conditions and as mentioned we take these
in the Rado–Weertman form [2]

dm

dz
− ξm = 0 (16)

whereξ is proportional to the surface anisotropy constant [8]. Equation (16) may be derived
by consideration of surface terms in a torque formulation [2, 9] or from the continuum limit
of the equation of motion of a surface spin. We derive the general results using (16) but for
illustrative illustrations we focus on the limiting formsm = 0 asξ → ∞, usually called
the pinned-spins condition, and dm/dz = 0 for ξ = 0, unpinned spins. As in I, we allow
for partial mirrors at the interfaces by means of the boundary condition

1H‖ = αE‖ (17)

where

α = σ2− iωε0ε2 (18)

results from a thin sheet of two-dimensional conductivityσ2 and dielectric constantε2.

Figure 4. Notation for main calculation. We work in terms of the rfe fields and use the circular
polarization states, with superscripts+ or − implied on all field amplitudeseI , eR etc.
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The coefficients for transmission and reflection of an ordinary Fabry–Pérot resonator
can be found either by summation of the series arising from multiple reflections or by a
resultant-wave method in which all the ‘up’ waves and all the ‘down’ waves are summed
before electromagnetic boundary conditions are applied; the two methods can be shown
to give the same results [10]. A useful refinement of the resultant-wave method results
from the comment [11] that because of the linearity of the problem the boundary conditions
can be written in terms of coefficients for the single interfaces. This is the method that is
applied here. We define notation for the complex amplitude reflection coefficientsρ and
transmission coefficientsτ at the interface between medium 1 (isotropic dielectric) and 2
(magnetic medium) as follows, where for convenience we denote the modes in medium 2
simply as 1 and 2 rather than ‘optical’ and ‘spin-wave’ as before:

ρ12 is the ratio of theE-field reflected-wave amplitude to the incident-wave amplitude
for the incident wave in 1 at the 1–2 interface.

ρ21ij : incident and reflected waves in 2 withi = 1, 2 denoting the reflected wave and
j = 1, 2 the incident wave.

τ12i : incident wave in 1, transmitted in 2 of typei.
τ21i : incident wave of typei in 2, transmitted in 1.

The explicit forms of these coefficients are given in the appendix and as stated we use
them to write down the six boundary conditions for figure 4 in the form of linear equations
relating each outgoing wave at each interface to the incoming waves. It is convenient to
use the rfE Field amplitudes and in terms of these the boundary conditions are

eR = ρ12eI + τ211eU1+ τ212eU2 (19)

eD1 = τ121eI + ρ2111eU1+ ρ2112eU2 (20)

eD2 = τ122eI + ρ2121eU1+ ρ2122eU2 (21)

eU1 = ρ2311δ11eD1+ ρ2322δ21eD2 (22)

eU2 = ρ2321δ12eD1+ ρ2322δ22eD2 (23)

eT = τ231δ13eD1+ τ232δ23eD2. (24)

In terms of phase factorsφj = exp(ikjL) corresponding to propagation of modej across
the magnetic region we have definedδ11 = φ2

1, δ12 = δ21 = φ1φ2, δ22 = φ2
2, δ13 = φ1 and

δ23 = φ2.
Equations (19)–(24) together with the explicit forms of the single-interface coefficients

given in the appendix are the main analytic results of this paper. These equations are
quite general, applying to both ferromagnets and antiferromagnets. The superscript± is
implied on all relevant quantities so the result applies to both signs of circular polarization.
The single-interface coefficients allow for general magnetization boundary coefficients in
the form (16) and because of (17) and (18) they incorporate partial mirrors which may be
absorbing (σ2 6= 0), pure dielectric and therefore energy-conserving (σ2 = 0) or indeed
absent (σ2 = 0 andε2 = 0). Equations (19)–(24) also allow that media 1 and 3 may be
different so that they apply, for example, to a film on a substrate as well as to a conventional
Fabry–Ṕerot etalon in which these media are the same.

It is seen that (19)–(24) are six inhomogeneous linear equations giving the ratios to the
incident fieldeI of the six unknownseR, eD1, eD2, eU1, eU2 and eT of figure 4. We have
used the algebraic manipulation packageMaple to find the explicit solution for the complex
transmission amplitudeeT /eI but the result is not particularly illuminating and we do not
show it here. In the computational work we used both of two slightly different methods.
First we took theMapleexpression foreT /eI and converted it automatically to Fortran code
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and second we applied a standard numerical subroutine to solve (19)–(24) directly. These
methods are not very different but use of both does give some check against trivial errors.

4. Transmission curves

We show here computed intensity transmission curves|eT /eI |2 obtained by direct numerical
solution of (19)–(24). Fringes related to the optical standing waves and governed bykO
were the subject of I so we now discuss only exchange-related fringes governed bykS . The
intention is to provide illustrative examples of the general results and we therefore simply
consider transmission through a free-standing film so that media 1 and 3 are identical and
we omit the effect of partial mirrors by puttingα = 0 in the boundary conditions (A2) and
similar. For sufficiently large values ofL the standing spin waves merge so that no fringes
due to them can be seen in spectra. We have checked that for largeL numerical results
based on the full expressions presented here do coincide exactly with corresponding results
from the programs used in I.

(a)

(b)

Figure 5. Transmission curvesT versusf = ω/ωm for free-standing YIG film of thickness
1 µm with no mirrors. Pinned-spin boundary conditions were used. Applied fieldH0 = 0.5M0

and damping0 = 0.05ωm. (a)+ polarization and (b)− polarization.
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(a)

(b)

Figure 6. Frequency dependence of zero-field transmission through free-standing FeF2 films of
thickness (a) 50µm and (b) 10µm for pinned-spin (. . . and left-hand scale) and unpinned-spin
(—— and right-hand scale) boundary conditions and damping|0α | = |0β | = 2.0× 10−4ωm.

The expectation for ferromagnets was that for spin-wave fringes to be seen the film
would have to be very thin with the consequence that the magnetic volume is small and
therefore the fringes are unlikely to be observable. This is indeed the case as is seen from
the example in figure 5 where for simplicity we show the easily interpreted frequency scan.
It is seen that even for pinned-spin boundary conditions the fringes are far too small to be
observable and we found that they are smaller still for unpinned-spin boundary conditions.
We show these results however because as mentioned it should be possible to generalize
the formalism to superlattices in which the magnetic volume can be much larger.

We now turn to the more important case of antiferromagnets. The technique used by
Lui et al [4] to observe spin-wave fringes on epitaxial MnF2 films was cavity microwave
absorption and the data take the form of derivative plots. In their nature, these cannot be
converted into calibrated reflection or transmission curves so the only analysis possible is
the determination ofD from the fringe spacing; this is not a significant test of the theory
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(a)

(b)

Figure 7. Frequency dependence of transmission through free-standing FeF2 films of thickness
(a) 50µm and (b) 10µm with pinned-spin boundary conditions for damping values|0α | =
|0β | = 2.0× 10−4ωm (. . . and left-hand scale) and|0α | = |0β = 10.0× 10−4ωm (—— and
right-hand scale).

presented here. As discussed in I, it is now possible to obtain high-quality frequency-swept
spectra from high-resolution Fourier-transform instruments [7, 12, 13] and we concentrate
on spectra of this kind since they can be compared in detail with theory [7]. We use the
parameters of FeF2 since the resonance frequency of 52 cm−1 falls in a convenient range.
For simplicity, we discuss only free-standing films with no mirrors and as mentioned we
compare the limiting cases of pinned- and unpinned-spin boundary conditions,ξ →∞ and
ξ = 0 in (16).

Figure 6 shows the frequency dependence of transmission in zero field,ω0 = 0, for two
films of thicknessesL = 50 and 10µm. As seen from (11)χ+ andχ− coincide in this case
so the curves apply to either sign of circular polarized radiation or indeed to unpolarized
radiation. It is seen that the form of the fringe pattern depends strongly on the spin boundary
conditions. The curves show spin-wave fringes of spacing given bykSL = nπ superposed
on a slowly changing background that results from the optical-wave fringes of spacing given
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(a)

(b)

Figure 8. Frequency dependence of transmission through free-standing FeF2 films with
|0α | = |0β = 2.0 × 10−4ωm and thicknesses 50 (——) and 10µm (. . .) with pinned-spin
boundary conditions in applied fieldH0 = 3 T. (a)+ and (b)− circular polarization.

by kOL = nπ . In the immediate vicinity of the resonance frequencyωR both sets of fringes
are suppressed due to the strong absorption resulting from the strongly peaked Im(χ). It is
striking that the spin-wave fringes are present only forω > ωR; this is a consequence of the
fact thatkS is real only forω > ωR, as seen in figure 2(b). The fringes for unpinned-spin
boundary conditions are much less prominent than those for pinned spins. On the scale of
figure 6 they are hardly discernible away from resonance although minor features can be
seen in the data files.

It is to be expected that the form of the fringes depends strongly on damping and we
illustrate this in figure 7 where it is seen that the fringes become broader and shallower as
damping increases. Like those in figure 6, the zero-field transmission curves in figure 7
apply for unpolarized radiation. A further expectation is that if mirrors are included with
an increase in partial reflectivity at the interfaces then the fringes will sharpen. We have
not checked this although as noted partial mirrors are included in the formalism.

We have commented already that it follows from (11) and (12) that the effect of an
applied field is to produce a Zeeman splitting±ω0 between the dispersion curves for+ and
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(a)

(b)

(c)

Figure 9. Field dependence of fixed-frequency transmission through a 50µm free-standing
FeF2 film with |0α | = |0β | = 2.0× 10−4ωm. Boundary conditions are pinned spin (. . .) and
unpinned spin (——). (a)+ and (b)− polarization forω/2πc = 57.0 cm−1 > ωR ; (c) +
polarization forω/2πc = 47.0 cm−1 < ωR . In (b) and (c) the curves for unpinned spin are
referred to the right-hand scale.
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− polarization. Figure 8 shows transmission curves with the same parameters as figure 6(a)
but in the presence of an applied field. The main difference is the Zeeman splitting, with
minor differences between the+ and− curves due to the fact that the resonances fall at
different points relative to the slowly varying optical-wave fringe background.

It seems likely that frequency-swept spectra will be of most relevance but much magnetic
resonance work is done by means of field sweep at fixed frequency so for the sake of
completeness we present some spectra of this kind in figure 9. The fringe patterns can be
interpreted by reference to the dispersion curves of wave number versus field shown for the
spin modes in figures 3(a) and 3(c). Forω/2πc = 57.0 cm−1 figure 3(a) shows thatk+S
is real for allB0 whereask−S is real only up toB0 = 4.4 T. Correspondingly, figure 9(a)
shows fringes inT + for all B0 and figure 9(b) shows fringes inT − only for B0 < 4.4 T.
At the lower frequency figure 3(c) hask+S real only forB0 > 4.4 T andk−S is never real.
Figure 9(c) forT + indeed shows fringes only forB0 > 4.4 T. The transmission curveT −

versusB0 is featureless and is not shown.

5. Conclusions

The main results of this paper are equations (19)–(24) together with the single-interface
transmission and reflection coefficients given in the appendix. These give the generalization
of the standard calculation presented in I to include dipole-exchange effects. The formalism
is general, allowing for the bounding media to be different from one another and including
the effect of partial mirrors at the interfaces. As in the pure dipolar case, I, for the Faraday
geometry the eigenmodes are the two signs of circular polarization but in this case each
polarization has two propagating modes, loosely speaking optical and spin-wave. For the
more important case of the antiferromagnet the zero-field transmission and reflection, as
seen for example in figure 6, is the same in both polarizations so that the results apply also
to unpolarized radiation. Application of a field results in a Zeeman splitting, figure 8 for
example, with implications for polarization selection which we have not discussed in any
detail.

We have carried out our calculations within a macroscopic formulation of dipole-
exchange effects with exchange appearing in the form ofD∇2M terms. This method is
widely applied to ferromagnetic film systems and was used in a study of antiferromagnetic
films by Stamps and Camley [3]. Our dynamical equations for the antiferromagnet are
equivalent to theirs. However, they go on to a detailed study of a different problem, namely
the dipole-exchange modes propagating parallel to the film surfaces.

As expected, for a single ferromagnetic film spin-wave fringes resulting from the
exchange corrections are very unlikely to be observable. This results from the fact that
the thickness of the required film is very small on the scale of the wavelength and it may be
that if the calculations are extended to a superlattice the greater magnetic volume of many
layers will lead to observable spin-wave fringes.

For antiferromagnets our computed results show that spin-wave fringes large enough
to be observable should be present in transmission through films with thicknesses in the
right range; this finding is of course what we expected since features due to spin-wave
standing modes have been detected in field scans of microwave absorption in epitaxial films
of MnF2 [4]. We stress here the qualitative result, illustrated in figure 6, that the form of
the fringes depends strongly on the form of the spin boundary conditions at the interfaces.
We have used the Rado–Weertman [2] form of the spin boundary conditions in deriving the
transmission and reflection coefficients given in the appendix. These include both pinned-
and unpinned-spin conditions as special cases and are therefore adequate to establish the
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sensitivity of transmission to the boundary conditions. In some cases, for example two
magnetic films in contact, expansion of the equations of motion of interface spins leads to
more complicated boundary conditions whose exact form depends on interface exchange
and anisotropy coefficients [6, 14]. It appears, therefore, that detailed study of transmission
spectra of the kind analysed here may be a means of characterization of antiferromagnetic
film systems. Up to now, most applications of magnetic thin films have involved transition-
metal ferromagnets for which the frequencies of dipole-exchange guided modes are in
an accessible range for Brillouin scattering. Thus the main tool for the determination of
interface parameters in ferromagnetic-film systems has been the detailed study by this means
of the dynamics of the dipole-exchange modes [15]. Recently, there has been discussion of
possible applications of antiferromagnetic films, for example for exchange biasing of sensors
and read heads. Antiferromagnetic dipole-exchange modes are at too high a frequency for
Brillouin scattering and the question of a viable characterization technique is still open. The
analysis and the results that we have presented, taken with the high resolution that has been
achieved in recent FIR studies [13], suggest that FIR spectroscopy may be the tool that is
needed.

A number of generalizations of the calculations presented here is possible. We have
already mentioned the extension to superlattices, which would involve an application of the
standard transfer-matrix formalism [16] to include the exchange-induced spatial dispersion
that underlies the present work. We have restricted attention to the Faraday geometry, with
normal incidence and applied field normal to the Fabry–Pérot interfaces but we could also
discuss, for example, the parallel-field Voigt geometry, as was done in I for the purely
optical modes, or if necessary oblique incidence. It may be recalled, too, that in uniaxial
antiferromagnets the form of the permeability tensor depends on the angle between the static
field and the uniaxis [7] so the number of possible extensions is quite large. However, we
believe that the formalism and results presented here are sufficient to establish the key
points.
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Appendix. Single-interface coefficients

These coefficients are derived from the boundary conditionsE‖ continuous,1H‖ given
by (17) and the Rado–Weertman condition (16). For the upper interface in figure 4 with
only eI incident (eU1 = eU2 = 0) the boundary conditions are

1+ ρ12 = τ121+ τ122 (A.1)

q1− ρ12q1− (q21τ121+ q22τ122) = α(τ121+ τ122) (A.2)

τ121= −1τ122 (A.3)

where

1 =
(
k22− iξ

k21− iξ

)(
q22χ22

q21χ21

)
(A.4)
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and theq variables are related to thek variables byq = µck/ωm. Like µ andk, q carries
the implied superscript±. Solution of (A1)–(A3) gives

τ121= −21q1

−1(q1+ q21)+ q1+ q22+ α(1−1) (A.5)

τ122= 2q1

−1(q1+ q21)+ q1+ q22+ α(1−1) (A.6)

ρ12 = q1− q22+1(q21− q1)− α(1−1)
−1(q1+ q21)+ q1+ q22+ α(1−1). (A.7)

Similar calculations give the other coefficients, which are

ρ2111= q1(1− δ)−1q21− δq22+ α(1− δ)
−1(q1+ q21)+ q1+ q22+ α(1−1) (A.8)

ρ2121= q21(1+ δ)− q1(1− δ)− α(1− δ)
−1(q1+ q21)+ q1+ q22+ α(1−1) (A.9)

τ211= q21+ q22− 21q21+ δ(q21− q22)

−1(q1+ q21)+ q1+ q22+ α(1−1) (A.10)

ρ2112= q221(1+ δ)− q11(1− δ)− α1(1− δ)
1(q1+ q21)− (q1+ q22)+ α(1− 1)

(A.11)

ρ2122= q1(1− δ1)− q22−1δq21+ α(1− δ1)
1(q1+ q21)− (q1+ q22)+ α(1− 1)

(A.12)

τ212= 1(q21+ q22)− 2q22+1δ(q22− q21)

1(q1+ q21)− (q1+ q22)+ α(1− 1)
. (A.13)

Coefficients for reflection and transmission at the 2–3 interface are obtained by means of
obvious substitutions.
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